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The algebraic multilevel iteration method, AMLI, is a recursively defined method
to construct spectrally equivalent preconditioners to a sequence of symmetric and
positive definite matrices, corresponding to a number of levels with increasing de-
grees of freedom, such as arises for a sequence of nested finite element meshes. The
matrix sequence is connected by the assumption that the Schur complement, for
the corresponding two by two partitioning of the matrix on any level, is spectrally
equivalent to the matrix on the next lower level with bounds which hold uniformly
for any number of levels. It was originally presented for matrices for which there
exists a hierarchical basis matrix form with an explicitly given transformation ma-
trix between the standard form and the hierarchical form. This case allowed for
arbitrary perturbations of the matrix block, corresponding to the added degrees of
freedom, independent of the Schur complement.

For more general matrices, the spectral equivalence still holds if the perturbation
of the above block diagonal matrix satisfies a certain spectral relation to the Schur
complement. By solving the arising systems for this block with sufficient accuracy
one can come arbitrary close to the condition number for the two-level method
with exact such blocks.

el Introduction

The computational complexity when solving large sparse systems of linear
equations can grow rapidly with problem size unless a proper solution method
is used. Ideally, we want a solution method whose complexity grows propor-
tionally to the order n of the system, i.e. is of optimal order. To solve a linear
system Az = b, where 4 is symmetric and positive semidefinite, we shall
consider the case where A is the final matrix 4/ in a sequence of matrices
(AR AW e L(R™ ,R™), k = 0,1,...,Jy for a number of Jy levels and
np > ng—1. On each level, the matrix is partitioned in a two by two block
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form

k k
AWK — A(l : A(l-_z) } g — 7Ny
AR AR} ke

of dimensions as indicated. Note that 4" has the same dimension as A%-1).
In certain finite element applications the matrices are constructed for a se-
quence of nested meshes while in other applications the matrices must be
constructed algebraically during a preprocessing phase. The matrices in the
sequence are connected via the Schur complements

k k) (071 4k
St = A‘(z - “1-(21)‘4§ ) ‘4(12)

as the basic assumption made is that S, on level k is spectrally equivalent
to the matrix A%*~1) on level k — 1, with spectral equivalence bounds which
hold uniformly for all levels. To solve systems with A% we shall use the
algebraic multilevel iteration (AMLI) method. The AMLI method was first
proposed in [10, 11].

The method is based on a preconditioner M ") which is constructed as
an approximation of the block factorization

a0 = [AT 0] ATl
AR Lo Sy

where A(lk) is replaced with a preconditioner Mlm and S ) is approximated
with a certain matrix polynomial, involving the preconditioner A/*~1) to the
previous level matrix A%~1. In this way, the preconditioner is not defined
explicitly but only by recursion via the given levels. The preconditioner is
normally used with the conjugate gradient method.

In the original papers the method was presented for finite element matrices

and basis functions for which a strengthened form of the Cauchy inequality
holds, .

a(u,v) < fy{a(u,u)a(v,v)}%, for all w € Vi—; and v € Vi\V,_y,

where V. denotes the finite element space on level &, and a(, -) is the symmet-
ric bilinear form corresponding to the given differential operator. Here and in
what follows, by V} \ V,_; we will denote a complementary space Wy, i.e., a
space such that V), = V.., & W,

It was shown that the method had an optimal order under quite general
conditions. In this case there is no restriction on the perturbations A/ l(k) of

Aﬁ"”. Here a survey of this method is given and it is then shown how it can
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be extended to more general positive definite matrices. In the latter case the
perturbations M 1(“") must satisfy a certain relation to the Schur complements.

e2 The strengthened Cauchy inequality

In the original version, a sequence of symmetric positive definite sparse
matrices {4®}]° were given axﬁl) related variationally, ie., A*~1 =

. Syt . AN
(I )TA®TE - where If | = [Iu

], where I_; stands for the identity
k—1

operator at level k—1 and Jl(.f;) is typically an interpolation operator from
the current coarse to the new components of the solution vector on the next
finer level. A common example of such matrices are standard finite element
matrices, defined via a bilinear form a(u,v), u,v € H!'(Q) and basis functions
{o:}, v € H1(Q).

For the analysis of the method we will need the transformed matrices

~ k) (k) (k) 1
AW = JT AW J where J = [él iw } = Hél } ,It;_l} and I'™ is iden-
k—1

tity operator on the added vector spaces. 1t follows that A% has the following

two-level block form, |
(k) 30
k) — ‘L}\lk) Ary , (1)
AY) At-b
where X(ll}) = Ap+ A“'Jl‘ﬁ;’. Since the lower left block of A®) equals A1),

the transformed matrices are called two-level hierarchical basis (HB) matrices.
An elementary computation shows that Sy, = Sym, where Sk, is the

~ A~ I =1 o~
Schur complement of A*), Sy, = AKk-1) — AR 47 38 Therefore, the
following relations hold,

Ap =
AW - ke (2)
S‘ka) = SA(M

The hierarchical basis matrices admit the following strengthened Cauchy-
inequality,

1 1
T Tk T F(k) ., ) 2 T (k) 2 . V1 _ |0
vid wg'y(v A v) (w A w) , foxallv—‘[o },w-{vz],
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for some v, 0 < vy < 1.

For finite element stiffness matrices A% it turns out that the constant v can
be determined locally, elementwise, see {14, 1, 7, 17, 5]. For such matrices,
corresponding to triangulations obtained by successive refinement generating
geometrically similar elements, one can prove that  remains strictly less than
one, independently of the refinement levels Jy > 1. Actually, in the analysis
one needs the following readily proven relation,

1—+2 vIAWDy, <vTS, vy < V.ZA“"'“”vz, for all v. 4
2 294

To illustrate values taken by -+ consider piecewise linear (p = 1) and quadratic
(p = 2) basis functions and the bilinear form corresponding to a diffusion
problem, on a triangular reference element €,

du
(u,v) = //Za”a 89:Jdey’

where T = %, Ty = 4,0 < T < 1,0 <y < 1 and the coefficients a;; (where
a;; = aj;) depend on the coordinates, i.e., equivalently on the angles in the
triangulation and on the given diffusion matrix [Zi” alz } .

21 Q22

Theorem 2.1 [3]. Consider a sequence of piecewise linear and piecewise
quadratic finite element methods for nested meshes. Then the constant v in
the strengthened CBS inequality satisfies

. , 3 8 1-ad
== 14,12 12 or p =1
Y =" 8( 9 T1an/a forp

and v} = 37] f07 p= 2 where aij = au/(a“an)° and @ = @y, + dr» + aysy.
In partzcular <vi<d for any triangulation.

Theorem 2.1 can be used in particular to show how v? depends on the
angles in the triangulation. Using an algebraic derivation such a result was
derived already in [17], for the differential operator % + 8—0;2— and a general
triangular mesh. For a triangle 7 with angles 0;(7), a1; =1, a2z = 1, a12 = 0,
using a different method of derivation, it was shown that
5 3 3—-g

4 g -3)F+ 3

where g = max 2 cos?6;. Hence 8 <g<3,50% < <3 The upper

bound 7} = 1s taken only for a degenerate triangle where the maximum angle
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equals 7, so ¢ = 3. The value v = 1_2 is taken for any right angled triangle,
including a degenerate with a zero angle. The smallest value v* = 2-is taken
for equilateral triangles where g = —i- Our result shows more generally that
these bounds hold for an arbitrary second order elliptic operator. The upper
bound follows from a%, < 1 and the lower bound is taken when @;, = @y = 1
and 612 = —%.

e3 The two-level preconditioning methods

There are two major preconditioning schemes to solve the block partitioned
algebraic system.

(i) Multiplicative scheme [7]

This is based on the exact block matrix factorization

A A T4 07 [ AT Ay a4 4t
A= [‘421 A J = [AZ] SJ [0 L , S = Ay — Ay AT A,

Here A, is replaced with some approximation M, by (2), S equals
S = A(k_l) - ‘1\21‘41*1‘112,

and is replaced with some sparse approximation My, such as A%~ and the
preconditioning takes then the form

M0 LM
]\-[-nzlt - [‘421 ]\/‘[2] !:0 12 .

The action of Mv,;,vlt‘ requires two inversions of M, an inversion of M, and a
multiplication with A,» and A»;.

(ii) Additive scheme [14], [7]

To be efficient this requires the use of the transformation matrix J and the
iterations are performed via the hierarchical basis function matrix (which,
however, need not be formed explicitly)

k)

~ A A,
JT‘4J = A= 1/\1 ,\1"
[‘421 Ay

N A4, 0
0 4,

where 4; = 4;, A, = A%=1 and diag (A4;, 45) is spectrally equivalent to .
Here A; may be replaced by M; and A*~1) by some approximation Afy to
form the preconditioner

]k[a(lrl: |:A[1 0 :l .

0 My
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Clearly, the action of M (;ild requires a single inversion of the blocks M, and
M,. The following spectral relations hold.
Theorem 3.1 Assume, that the following conditions are satisfied:

vIid;vy <vIMivi <1 +86)vIAivy  for all vy

VgAng S V.’{]V[gv-z S (1 + (Sg)VgAgV-g f07‘ all Va,

where 6, and 02 are some positive constants. Then the following inequalities
hold:

C'I)LIIV:I‘AV < VT]UmHV < C-nLll.V7 Av fOT all v,

CadaVT AV < VI Myqqv < CoqavT Av  for all v,

where
e =1,
Cone = -1_1—72 {1 * % [61 + 62 + /(61 -82)7 + 451(5272] } )
Cadd = I_l,;,
Cotd = 1257 {1 +3 [61 + 62+ /(61-62) + 4(1+51)(1+52)7-z]} _

Frequently, 4, is similar to a mass matrix and M, may then correspond to
a simple smoother, possibly even M; = diag(4;). By performing a sufficient
number of such smoothing steps, 6; can be made arbitrarily small. M, corre-
sponds normally to an approximation of A%~ possibly defined recursively
via a multilevel approach. By making M, sufficiently close to A*~1) §, be-
comes arbitrarily small. When 4, = d» = 0 Theorem 3.1 shows that the
condition numbers become

k= (M} A) < 2

mit —2)
S g1 1+
Ky = (M gqd) < =5

For a triangular mesh and a general second order diffusion operator with
constant coefficients on each element of the coarsest mesh, as follows from
Theorem 2.1 these condition numbers satisfy

1.6 <k <4, 4.16.ky < 14.

Remark 3.1 In many practical problems A, is not well-conditioned with re-
spect to some problem parameters such as anisotropic diffusion coefficients or
nearly-degenerate triangles. In such cases one must construct more sophisti-
cated approzimations M, of Ay, see [9] for a discussion of this topic.
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e4 Extension to the Multilevel Case. Polynomial
Stabilization Procedures

The two-level methods could be extended to multilevel methods by simple
recursion, letting M{¥ = M*=Y or some polynomial function of A k=1,
However, as will be seen in Section 5, this does not necessarily preserve the
advantageous condition numbers given in Theorem 3.1, which permitted ar-
bitrary perturbations of the matrix block A(lk). One way to handle this is to
base the method on hierarchical basis function matrices or, at least, let the
transformation matrix J be involved in the method.

Let then {V;} be a sequence of finite element spaces corresponding to a
nested sequence of finite element meshes.

Since the hierarchical matrices are less sparse than the standard basis
function matrices, it is desirable to still use the latter in the actual implemen-
tation of the method. This can be achieved as follows.

Multiplicative multilevel preconditioner
Definition 4.1
o Let M) = A0)
o Fork=1,2,...,Jo, assuming that M*=1) has been defined, define first
MG=D)
A1) - P'/k(]\/[(k—l)_’A(k—l))]A(k—l)_l.

o Then

AR = MM 0 1M AR |} VilVie
AR (AT 0 L } Vi

where

Tk k k k) gk
AR = 44 (Agi—M{ NI, -
Tk A (k k k k
A = A + ) (A )
Here M*~1) is an approximation of A*=1D7"_ It follows that the precondi-
tioner M*) is only implicitly (recursively) defined.

Further, P,, are given polynomials of degree v, which are normalized,
P, (0) = 1 and should be chosen such that max|P,, | is as small as possible
on the spectrum of ME=DT! gh=1) Clearly, the smaller the norm of P,,
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on the above spectrum, as closer M*~1 is to A%=1) and, hence, to the
two-level method. As it turns out, there is no loss of efficiency by choosing
0 < P, (¢) €1 with max P, (t) as small as possible on the spectrum. With

this choice and assuming vI MMy, > vT AWy, for all v, € R™ ™1 it
follows
vIM®y > vT AWMy, for all v e R™. (6)

If v, = 1, we let then P, (t) =1—1t.
The reason for perturbing the off-diagonal block matrices as done in (5)
is that in this way

ME = g7 ik gk
takes the form
m* AR

T = .
4‘” MUE-DT 4}1’M“ A

(7)
which follows from an elememary computation. Hence MR can be considered
as a plecondltlonex to A% and the extreme eigenvalues of J\[ )74 equal
those of M®) ™" A Since the off-diagonal blocks m A™ equal those in
A®) the estimate of the extreme elgenvalues of MW 3% can be readily
done and although the preconditioner M *) does not involve matrices in the
hierarchical basis, the condition number of A/ )7" 4 can now be estimated
via the hierarchical matrix, see Theorem 4.1.

Additive multilevel scheme
Definition 4.2
M® 0
0 j\:[l(l.:—l )7t

} ‘/k\‘//\‘—l
V Vi

slk)y _
‘A/[add - [
where

M*=1 = [I - P, (M(k—l)"A(k—l))] A=D1

With the same assumption vT]\[(k)vl > virAlvl we have as before
vIM®F)y > vT Ay for all v € R™.

For P, we take a shifted and scaled Chebyshev polynomial,

Tu(H_O_)[)-i-l
T, (l+a) 1

P,(t)=
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where
T,(x) = % [(.’L‘ + \/3:2—1)" + (.I‘ - \/;r,z—l)v]

i.e., T, is the Chebyshev polynomial of the1 first kind. Further o, a > 0 is a
lower bound of the eigenvalues of M¢*=1"" A= By (6) the upper bound
of these eigenvalues is bounded by the unit number. We have

a=q min v"‘)rA(k_l)vz AL
= Qg = N VI R
vs vIMUk=Dy, = k=1

Assume now first that v = v, i.e. is fixed on each level. Then the following
holds for the multiplicative version.

Theorem 4.1 Let Afl(k) be spectrally equivalent approzimations to A(lk) such
that, uniformly in k, one has

V;I‘A(lk)vl < v;r]\/[‘(k)vl <1+ b)v'er(lk)vl, for all v.

Letv > (1 — 72)_% and p € (0,1) be a solution of the inequality,

1+p\° -4\

) . — v

( /> a<l—9—ab, a= /)l . (8)
1-p 1+ p¥

Then, the corresponding AMLI preconditioning matriz M (k) s spectrally
equivalent to A®) with the following bounds:

, T 1 \ r
viAWy < vTMWyv < ! b+ LI T BN YOO
1 -7 1-p

1 v
< ZNTAWN - for all v.
!

E 2
For v = nd 4~* j Y = 3_1 <
or v 2 and 4y < 3, one has « RV TR and A <

(& (42) +) /(01— 7). A

Due to the factor a in ab, the same bound for v holds for any b as for
b =0, i.e., the inequality (8) has a solution a € (0,1) if » > (1 ~ 4?)7%.
It can be shown that for the additive version the same bounds hold as in

Theorem 4.1 when we replace ﬁv with i%
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Remark 4.1 (Growth of the computational complexity)

Since P,(0) = 1, it is readily seen that each action of M=) requires v—1
actions of A*~D and v actions of MU5=D7" Therefore, to get an optimal
order, O(n), n = n; of computational complexity of each action of M (Jo)
the polynomial degree chosen must be bounded above and related to the ratio
ny/ny_y of the degrees of freedom. For a uniform recursive triangulation of a
plane domain where on each new level each triangle is divided in four parts,
it holds v < 4. On the other hand, as we have seen, to gel an optimal order
condition number, coml(]\r[('"')_I AWy = O(1) which is bounded as k — 0o, we
must choose v sufficiently large.

1t follows from the above that the following bounds must hold to get a
method of optimal order of computational complexity for a uniform partition-
ing of a mesh in a d-dimensional space, d =2 or d = 3,

1
<v <2 LMY

1
V1-72 L=
for the multiplicative and additive methods, respectively. Since v? < % for any
triangulation and any diffusion operator it suffices to take v = 2 when d = 2
for the first method. For the second method we Inust choose a triangulation
and restrict the diffusion operator so that v < 5, in which case we can take
v = 3. For problems in 3D, the restrictions are more severe.
The value v = 2 corresponds to what in the context of multigrid methods are
called a W-cycle and v = 1 corresponds to a V-cycle.
As was noted in [19], [6] and [15], to relax the above restrictions on v or
v one can better let v = 1 on most levels and stabilize the condition number
on certain levels using polynomials of sufficiently high degree there. The use
of such polynomials correspond to using inner iterations. As was shown in
[3], 14], 19], 1t is then most efficient to let the levels (ks) where stabilization,
or inner iterations, will take place be determined as follows,

ks+1 = (1 + (Ys)k'sa

where g4y = 1+a =1, s = ko,ko+1,...,J — 1. Herey = %logo/logpo,
where po is a lower bound on the average increase of degrees of freedom, i.e.

(nks+1/”ks)l/ e > po, and

0:{ (]\[ kst1.ke) _1(ks+1>}l/ s 41—k )

is the average condition number between the two levels. Here A (Fo+1:ks)
denotes the block diagonal preconditioner between levels k1| and k.
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From the definition of M ¥ it follows that the computational complexity of
one action of the corresponding preconditioner from level k11 to ks is

l+ay,
WA23+1 S & (n’ks-l—l - nl"‘s) + CO,””\':; .

Here c is a constant which depends on the sparsity of the matrices 4*) je. ¢
is an upper bound of the average number of nonzeros per row in Aik) for all k.
As shown in (3], [4], [9], if n < 1 it follows that «s — 0 and the computational
complexity becomes asymptotically of optimal order.

In general, ¢ is not known but can be approximated using values for a
regular mesh refinement, where both pg and v are known. Furthermore, it
turns out that the method is quite insensitive to the choice of stabilization
levels, see [9]. Alternatively, one may use the parameter—free AMLI method
of additive type as proposed in [12].

€5 The AMLI method for more general positive definite
matrices

In this section we consider the construction of an AMLI method for general
positive definite matrices, i.e., without assuming any underlying hierarchy
of meshes and thus avoiding any (implicit or explicit) transformation to a
corresponding HB block structure of the matrices. It will be shown that in
order to construct an optimal order preconditioner the approximations Bf“
to .4(1k) must be related to the Schur complements S, in a certain way.
It suffices to consider the two level form of the method as the multilevel
extension can be done as shown in Section 4 . For convenience, we delete
then the superscripts (k).

Consider the preconditioner in the block matrix factored form

(B, 0] [L B Aw
B—[A._,l SB] {o I } )

where B; is an approximation of 4; and Spg is an approximation of S4. Note
that

oo [B A
Az Sp+ Ao By Ay

so Sg is the Schur complement of B.
We assume that B is spectrally equivalent to -4} and Sg to S,y and that the
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following inequalities hold for some 8 > 1,7 > 1.

,Bv;rAlvl > VTBlvl > vr{Alvl, for all v; € Rk (10,1)
VI Savy > viSpvs > v.ZTS/sz, for all v, € R™-1, {10,i1)
T By A , -1 -1
where 4 = oy Ay and Sy = Ay — Ap AT A2, Sg = As — A0 By A,

We shall also assume that

O(V.ZSAVQ > v.lT.S'le > vIS vy, for all vy, (10,ii1)

where a > 1 and the left inequality is sharp, i.e., there exists a vector ¥, such
that

aQ'_,PSAVg = G;S@Gl
The right inequality in (iii) follows from the right inequality in (i), because
oo g ~ v y .
(i) implies viAv > vT 4v for all v = {vl , and hence vi'§ gva > vISav,.
2 )

As we shall see, n will be a lower bound for the estimate of the condition
number of B~' 4. The value of 5 taken will depend on both the accuracy of
the approximation of Sg to S4 and of By to A;. More precisely, the latter
dependence follows from

V:{(S[Q — S/‘)Vg >14 Vlg‘Agl (‘4;1 - Brl):llgvlg (11)

vISava - V'3 Sav'y

12> 1+sup
V2

where v'» is the eigenvector for the smallest eigenvalue of S4.
In general, unless Sp = Sg, a strict inequality @ < holds. Further o = 1 if
B =1 and «a is related to 3 in the following way. By (10,iii),

(a—1)97 5495

V1 (Sg— Sa)V2 = Vi A (47 - BYALv,
ViAo (I - B A1
(1= 8795 Ao A7 Ay

IA

~ ~ _1 _1
where 4, = Ag]Al'l, By =4, ?B14, *. Hence

a—1<qg@)(1-p"" (12)
where
4(%s) = VI A A A1V,
- 0’{5‘402
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Here ¢ can take large values for some vector, typically for a “smooth” vector
close to the lowest harmonic vector. However, for the particular vector v it
can be expected that ¢ take moderate values.

It is further seen from (11) that for (ii) to hold for a not too large constant
7, B; must be related to 4; so that

;"lflfhgv-g = Bl_l“llgv-z

or

N

AlBl_lAl-ng = 4,V

for some “smooth” vector vy such as the eigenvector to the smallest eigenvalue
2 g
of §4. Otherwise

V2 o g(va)(1= 87

where ¢(v3) is large, because vI Sava/vIv, is small. In this case n would
be much larger than 1 — 87!, The conclusion is that in order for B in (9) to
be an efficient preconditioner for a general spd matrix A, the approximation
By of A; must be related to the Schur complement S, and in particular, the
action of By'! must be close to the action of 47! for “smooth” vectors.

The inequalities (10,i-1ii) imply the following spectral relation between A
and B, see [13].

Theorem 5.1 Let (10,i-iii) hold. Then
vIidv <vT'Bv <kvTdv, foralv
where

k< B+ %[7}~1+((y~2)(ﬂ—1)]+%\/[7]—1+(a—2)([3—1)]2+4[3(a—1)(ﬂ—1).

In particular, if 8 =1 then k <1, if « = 1 then k < 31 and when o < 1 then
K < B1.

Consider now the case where the opposite inequalities hold, i.e.

B vIA v, <viBv, < vlTAlvl, for all vi € R+ "kt (13,1)
77‘1v§Sf\v2 < V-'{SBVZ < Vg’SIQV-g, for all v, € R+ (13,i1)
a‘lvg’Ssz < VZS‘QVQ < VgSAVg, for all v, € R -1 {13,1ii)

AMLI enumath: submitted to World Scientific on December 1, 1999 144]




where # > 1, 7 > 1 and « > 1. Here the latter inequality is sharp for a vector
V-z, i.e.

a”'9] SaVs = V] SeVs.

The following spectral relation between A and B holds (see [13]).

Theorem 5.2 Assume that (13,i-iii) hold. Then
kT Av < vITBv < vl Av, forallv
where

k< B+ 3n-1+ (A—a " )y-1)(B-1)]+
L1+ (o= Dn-D(B-D]? + 48(1~a"Nn(B-1).

Furtherk <nif f=1and k <nf ifa=n. If a <1 then & < np.

Remark 5.1 The bound ng has been derived earlier in [18].
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